Comprehensive Review of Deep Learning-Based 3D Point Cloud Completion Processing and Analysis

نویسندگان

چکیده

Point cloud completion is a generation and estimation issue derived from the partial point clouds, which plays vital role in applications of 3D computer vision. The progress deep learning (DL) has impressively improved capability robustness completion. However, quality completed clouds still needed to be further enhanced meet practical utilization. Therefore, this work aims conduct comprehensive survey on various methods, including point-based, view-based, convolution-based, graph-based, generative model-based, transformer-based approaches, etc. And summarizes comparisons among these methods provoke research insights. Besides, review sums up commonly used datasets illustrates Eventually, we also discussed possible trends promptly expanding field.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comprehensive review of 3D point cloud descriptors

The introduction of inexpensive 3D data acquisition devices has promisingly facilitated the wide availability and popularity of 3D point cloud, which attracts more attention on the effective extraction of novel 3D point cloud descriptors for accurate and efficient of 3D computer vision tasks. However, how to develop discriminative and robust feature descriptors from various point clouds remains...

متن کامل

Learning 3D Point Cloud Histograms

In this paper we show how using histograms based on the angular relationships between a subset of point normals in a 3D point Cloud can be used in a machine learning algorithm in order to recognize different classes of objects given by their 3D point clouds. This approach extends the work done by Gary Bradski at Willow Garage on point clouds recognition by applying a machine learning approach t...

متن کامل

Comprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features

Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...

متن کامل

Deep learning-based CAD systems for mammography: A review article

Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...

متن کامل

Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification

This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Intelligent Transportation Systems

سال: 2022

ISSN: ['1558-0016', '1524-9050']

DOI: https://doi.org/10.1109/tits.2022.3195555